

ADAPTIVE MUSIC ON THE WEB

Wayne Siegel, professor Ole Caprani, associate professor

DIEM

Royal Academy of Music

Skovgaardsgade 2C

Aarhus, Denmark

Department of Computer Science

University of Aarhus

Aabogade 34

Aarhus, Denmark

ABSTRACT

The project Adaptive Music on the Web was initiated

by DIEM in 2004 and realized in collaboration with

the Department of Computer Science at the

University of Aarhus with the support of a generous

grant from The Heritage Agency of Denmark under

auspices of the Danish Ministry of Culture. The goal

of the project was to develop new musical paradigms

that allow the listener to influence and alter a piece of

music while listening within the context of a common

web browser.

A set of artistic and technical definitions and

guidelines for creating adaptive music for web

publication were developed. The technical

possibilities and limitations of presenting adaptive

music on the web were studied. A programming

environment was selected for the implementation of

adaptive musical works. A group of electronic music

composers was established and each composer was

commissioned to create an adaptive musical work for

web publication in accordance with the established

guidelines. A prototype was created for each work.

Specialized programming tools were developed for

implementing these prototypes in the form of

adaptive musical works capable of running within a

standard web browser. A web site was set up for

presenting these works.

1. INTRODUCTION

The presentation of art on the web today is largely

limited to the distribution and presentation of works of

art created for other media. Typically these include

digitized photographs of paintings, digital text

documents of literary works, digitized films and

digital audio recordings. But for composers and

musicians, the artistic potential of the web as a media

in its own right is not limited to the distribution of

digital recordings. Adaptive music is music that can be

influenced by the listener. Adaptive music is

constructed using flexible structures, which allow the

music to unfold and develop in various ways under

varying degrees of control on the part of the individual

listener. The distribution of audio by means of radio

or CD distribution is a one-way street. The listener’s

role is that of a passive ”receiver” of a musical work.

The web is an interactive media. There are numerous

technical limitations and challenges in regard to

bandwidth, compatibility, response time and

dependability. Yet an increasing number of artists are

attempting to utilize and incorporate the web’s

potential for interaction in their art. The goal of this

project was to further develop musical forms

specifically created for web publication.

2. DEFINITION AND DOGMA

2.1. Definition

Adaptive music can be defined as music that can be

controlled and influenced by a non-expert end user or

listener, either consciously or subconsciously.

Adaptive Music might be considered a subcategory of

interactive music [1]. But while interactive music

generally refers to a musical situation involving a

trained musician interacting with a computer program,

adaptive music involves a non-expert user interacting

with a computer program. The term adaptive music is

sometimes used in the context of computer games,

referring to music that adapts as a result of game play.

In this context, controlling the music is generally not a

primary concern for the player (not “part of the

game”, so to speak) [2].

For this project the following definition of

adaptive music was adopted:

“Adaptive music is music that can be influenced

and affected by the listener. The listener can control

one or more significant musical parameters in the

music. The end user is not only the ”audience,” but

an active participant as well.”

2.2. Dogma

One important motivation for initiating this project

was to develop new musical forms for the web as a

media in its own right. Often sound is of secondary

importance in the world of multi-media. Here the

intention was to make sound the primary concern,

suppressing the tendency of human perception to

focus on vision. A list of requirements, or an artistic

and technical dogma, was presented to the composers

from the onset.

2.2.1. Criteria

For inclusion in the project works were expected to

meet the following criteria:

• Works should have open form.

• Works should be rule-based and flexible.

• Significant musical parameters should be

controlled by input.

• Software must be downloaded to the user’s

computer.

• Software must run locally on the user’s

computer without streaming data during use.

• Functionality should be independent of the

user’s internet bandwidth.

• Musical works should be experienced by the

user as if he/she is using a browser-based

service.

• Response between action and reaction must

be experienced as fast and agile.

• Any sound files used must have a duration of

maximum 2 seconds each and 20 seconds

total.

• Graphics can be used as a user interface but

must not become an important artistic

element.

2.2.2. The Ten Commandments

For the sake of illustration, a somewhat tongue-in-

cheek, but not entirely ironical, list of “ten

commandments” was created:

1. Thou shalt not covet long sound files

2. Thou shalt love thy listener as a participant

3. Thou shalt see possibilities in limitations

4. Thou shalt not mock modem connections

5. Thou shalt not reproduce (music)

6. Thou shalt not give thy programmer

ambiguous messages

7. Thou shalt respect thy programmers

limitations as thine own

8. Thou shalt not kill thy programmer

9. Thou shalt observe all deadlines

10. Thou shalt not create multimedia

3. PLATFORM

The next step was to adopt a standardized software

platform for the implementation of the adaptive

compositions. The choice was by no means an easy

one. At the time the project was initiated, there were

no consistent, flexible and compatible industry

standards for interactive web audio.

Our priority was to employ a platform that met the

following criteria: 1) widespread, free and simple

distribution, 2) functional on most commonly used

operating systems and browsers, 3) real-time control

of sample playback, sound synthesis and signal

processing, 4) precise control of timing.

Several options were available, each with it’s own

advantages and drawbacks. In general the latter

included limitation to specific browser support,

incompatible architectures, lack of widespread

distribution and complexity in installation and use. As

stated in a report by the Interactive Audio Special

Interest Group [3]:

“There is no higher audio-centric consciousness at

work to facilitate a consistent set of audio capabilities.

It will always be up to manufacturers to distinguish

themselves through their own technologies, so

standardized implementation will never be the answer.”

The following programming platforms were

considered:

• Max/MSP

• Java

• JSyn

• Flash

3.1. MAX/MSP

Max/MSP is a graphical programming environment

designed for music, audio, and multimedia. Over the

past 15 years Max/MSP has developed into a leading

software environment for composers creating

interactive music. Marketed by Cycling74, Max/MSP

is compatible with both Mac OS X and Windows XP

[4].

Max/MSP was considered to be an ideal platform

for this project, since many of the composers involved

were familiar with it and had previously used it to

create interactive music. A run-time version allows

end users to run applications created in Max/MSP

without purchasing the software. Karlheinz Essl uses

this approach to distribute Max/MSP patches [5].

 There were, however two crucial drawbacks: 1)

the end user is required to download a runtime version

of the software, a process that can be somewhat

complicated, especially for Windows users, and 2) it is

not possible to create Max/MSP applications that run

within a web browser.

3.2. JAVA

Java is an open source and platform independent

programming language compatible with Windows,

Mac OS X and Unix. Java applets are applications or

programs that are embedded in other applications [6].

The use of Java applets in web pages is widespread.

The Java Sound API specification provides low-level

support for audio operations including audio playback

and recording, mixing, synthesis and signal processing

within a flexible framework. The Java applets of J-

DAFX [7] and Jass [8], show that advanced digital

audio applications can indeed be written in pure Java

based on low-level operations of the Java Sound API.

3.3. JSYN

JSyn is a freeware plug-in and object library for Java,

which provides real-time unit-generator based

synthesis for stand-alone Java applets in a web page

[9]. We considered JSyn to be a powerful and flexible

platform in reference to this project. Our main concern

was that JSyn was created and supported by a

sympathetic but very small company [10]. The JSyn

website indicated that the programming environment

had not been maintained on a regular basis. We were

not entirely convinced that JSyn would be supported

or even available in the distant or near future.

3.4. FLASH

Flash is a commercial product, marketed by Adobe

Systems, which includes a professional authoring

program and a player provided free for end users.

Since its introduction by Macromedia in 1996, Flash

has become a popular platform for adding animation

and interactivity to web pages. Flash is commonly

used to create animation, advertisements, web art and

to integrate video into web pages [11]. Originally

designed for animation, Flash has a number of

limitations and drawbacks in relation to audio in

general, and regarding interactive audio in particular.

Synchronization is limited, and in certain situations

unreliable. Audio playback is timeline based.

Synthesis and signal processing, such as filtering and

modulation, are not possible [12]. These limitations

were considered to be serious hindrances in relation to

the project goals.

3.5. PLATFORM SELECTION

In addition to the platforms mentioned, a combination

of Max/MSP and Flash was also considered. The

flashserver external for Max/MSP [13] allows for

bidirectional communication between Max/MSP and

Flash. Essentially, this allows Flash to be used as an

interface to Max/MSP, making the Max/MSP

application invisible to the user. This platform was

tested and rejected for three reasons: 1) clumping of

data and resulting delays were found to occur in the

TCP/IP link used between Flash and the flashserver,

2) Max/MSP was found to be somewhat unstable on

the Windows platform and 3) this configuration would

require that the user download and install additional

Max/MSP runtime software.

A decision was made to use Java as the main

platform for the project. It was also decided that

composers preferring to work directly with Flash as a

compositional medium could do so. Most of the

composers associated with the project preferred to

create prototypes in the form of Max/MSP patches.

The strategy chosen for implementing the Max/MSP

prototypes in Java was to create a toolbox or object

library in Java that mimicked the functions of the

Max/MSP objects used in the prototypes, Fig. 1. A

similar approach has been used in Jsyn [9] and Jass

[8].

Adaptive Music Java Applets

Java library of MSP objects

(groove~, cycle~, reson~, etc.)

Java Sound API version 1.5 or higher

Java Virtual Machine

Windows XP Mac OS X

Fig. 1. Java implementation of Max/MSP patches.

4. COMPOSITIONS

Six composers were involved in the project:

• Jens Hørsving

• Mikko Jensen

• Lasse Laursen

• Morten Riis

• Wayne Siegel

• Kristian Vester

The composers were first asked to create a proposal or

description of their composition. The various

proposals were presented and discussed in a group

forum. The composers were then asked to create

prototypes of their compositions in Max/MSP. The

project programmers worked with the composers

porting their compositions to Java. A description of

the works created by the composers follows:

4.1. Jens Hørsving

Mass Is The Opposite Of Space is constructed over

the spoken sentence “Mass is the opposite of space.”

The sentence is broken into six parts:

• mmmm: whispered

• mass: short, whispered

• is: short, whispered

• the op-op-site of: whispered rhythmically

• space: normal voice (more substantial)

• ssss: whispered

Each of these six sentence fragments corresponds to a

letter on the computer keyboard (A-Z), but the user

does not know which fragments and which letters

correspond. The sounds are processed using the

following effects: pitch shifting (transposition),

panning, looping and fading.

The user can play with this sentence and create a

three-voice texture. Typing a letter will start the first

voice, shift-typing a letter will start a second voice and

control/shift-typing a letter will start the third voice. In

this manner, the user can create polyphonic stereo

voice textures.

The sounds are supplemented by graphics in a

window whose background color changes constantly,

gradually and almost unnoticeably through the entire

color spectrum. The three polyphonic layers are

visualized in black circles The louder the sound, the

larger the circle; the higher the circle is placed on the

screen the higher the sound is transposed. When a

sound fades out its corresponding black circle

gradually decreases in size. The horizontal placement

of the circle shows the panning position of the

corresponding sound. The movement of the circles

visualizes the sounds of the music and the placement

of these sounds within the stereo image.

It was the composer’s intention to create an

intimate mood reflecting on the concepts of sonic

mass and silence, combined with a simple but

beautiful interface.

Fig. 2. Screen shot of Mass is the Opposite of Space.

4.2. Mikko Jensen

Mikko Jensen’s work is based on related sound

progressions divided into segments. The user can

manipulate the segments by clicking on the images

that represents the sound segments. The size of each

image reflects the duration of the sound segment

(larger images associated with longer sounds) while

the placement of the image reflects the pitch (higher

vertical placement represents higher pitch). When the

user has clicked on various images a few times, the

basic sounds and the images will change and the user

can begin exploring once more.

There are three different basic sounds. The amount

of time (number of mouse clicks) that one can play

with a particular set of basic sounds is random.

Relatively quick mouse clicks are most fruitful, since

these allow the user to interrupt the segments before

they have finished playing, giving the user more

control over the sounds. But this is up to the user’s

own taste.

The work is a sort of picture bingo in sound. After

playing for a while, the user will begin to remember

which sounds are represented by which images and

how they are transformed. The intention was to create

a work that did not use pitch and rhythm in a standard

way. The idea is related to Mikko Jensen’s project Pol

Mod Pol (Pole Against Pole), which to a great extent

uses rhythm as a means of expression, but which

would be extremely difficult to notate or describe,

since it is edited by hand “with feeling”. This

performance option is offered the user in Mikko

Jensen’s adaptive work.

Fig. 3. Screen shot of adaptive work by Mikko

Jensen.

4.3. Lasse Laursen

Og (the Danish word for: “and”) is a kind of audio-

visual text sound composition, which is played and

created using the computer keyboard and mouse.

There are two versions, an interactive version which

the listener can generate and edit and a playback

version, which can be activated via the playback

interface.

Fig. 4. Screen shot of Og by Lasse Laursen.

Og uses 40 sounds consisting of sampled spoken

words (in Danish) that are controlled by typing the

first letter of the word. Each word can be automated

(looped), adjusted, deactivated and reactivated by

typing the letter that triggers sample playback. The

word associated with a letter is looped when the letter

is typed more than once within a five second interval.

A sound is deactivated if its letter is struck again in

the rhythm of the looped sound. A sound can be

adjusted if more than five loops are activated. When

more than five loops are active some of the letters

begin to float around the screen. A sound associated

with a floating letter can be adjusted by clicking on

the letter. The arrow keys can now be used to change

the playback speed. Only floating letters can be

adjusted. A sound can be reactivated by deactivating

two loops in a row and tying the letter displayed in

green in the pulse of the loop (as in a game of tennis).

Og is a work that monitors the actions of the

listener and adapts the music to the listener. Og is

predictable. The listener is encouraged to imagine

specific results and then attempt to realize the desired

version of the work.

4.4. Morten Riis

SIC (Structural Interactive Creation) is an adaptive

musical environment designed to present the

composer’s musical aesthetic. The intention is to have

the listener “compose” music within an artistic

framework created by Morten Riis, who was both

composer and programmer. The interface uses mouse

movement to change the sound, but the relationship

between user control and sonic results are relatively

complex. Few control parameters control many

different internal compositional processes. Gradually,

the user learns how the controls affect musical

processes of the work. But an element of uncertainty

and surprise is built into the system, and the user

interface itself is constantly changing.

SIC was designed and programmed in Max/MSP

by Morten Riis. For technical reasons, SIC has at this

writing not yet been implemented in Java and is not

presented on the Adaptive Music web site. The

Max/MSP patch can be downloaded from the

composer’s web site [14].

Fig. 5. Screen shot of SIC by Morten Riis.

Below is a description of the interface:

4.4.1. Red knob (sine wave synthesizer volume)

This knob controls the volume of the synthesizer

module, which consists of several sine wave tone

oscillators. The sine wave tones become louder when

the knob is “turned up”. This knob also controls cross

fade between pure sine waves and sine waves

modulated by noise. Frequency and envelope are

controlled by cursor position. Vertical changes affect

pitch, while horizontal changes generate random

envelopes. Clicking and holding down the mouse

anywhere in the large square will activate random

gates that mute and un-mute the synthesizer.

4.4.2. Yellow knob (noise sample player volume)

This knob controls the volume and playback of

sampled sounds. The vertical position of the cursor

controls the playback pointer position within a “noise”

sound file, while the horizontal position controls

cutoff and resonance of the built-in filter. Clicking on

the mouse switches randomly between filter types

(low pass, high pass, band pass and notch).

4.4.3. Green knob (noise type select)

This knob is used to select between 8 noise sound files

that are used by the noise sample player.

4.4.4. Blue knob (effects)

This knob controls two effects that are applied to both

the sine wave synthesizer and the noise generator. The

effects are 1) a granular effect, controlled by the

vertical position of the cursor, that changes pitch and

2) a sample degrade effect, controlled by the

horizontal position of the cursor, that reduces the

sample frequency.

4.4.5. Overall control

The functions described above work together

simultaneously. The makes SIC complicated and, due

to the many random functions incorporated,

unpredictable. The expression is constantly changing.

4.5. Wayne Siegel

Synchopath is an adaptive musical toy designed for a

younger audience (ages 6-12). The work consists of

three elements, the controls of which are

straightforward and easy to learn.

4.5.1. Accelomouse

Accelomouse registers mouse motion, calculates the

current speed of the mouse, and uses this data to

control volume and filter parameters in real time

applied to a noisy sampled sound source and a white

noise oscillator. Mouse movement data is also used to

control the frequency of a sine wave oscillator within

a range of 80 and 200 Hz. The result is an

“instrument” that creates a noisy sound when the

mouse is moved. The faster the mouse is moved, the

louder and brighter the sound. When the mouse is not

moved, there is no sound. Accelomouse is always

active when the program is running and provides a

sonic representation of mouse movement.

4.5.2. Synchopatch

Synchopatch consists of several elements. The musical

idea was to create a work that would generate rhythms

according to a set of rhythm algorithms and melodies

within a set of four different scales. The activity level

and tempo of the rhythm generator is controlled by

mouse speed. The faster the mouse moves the more

percussive hits occur and the faster the tempo.

Four musical scales, each with its own mood, are

associated with the four extreme corners of the

computer screen. When the cursor is located in the

upper left corner of the screen, melody and

accompaniment is generated within scale 1, when the

cursor is located in the lower left corner of the screen,

scale 2 is used, when the cursor is located in the lower

right corner of the screen, scale 3 is used and when the

cursor is located in the upper right corner of the

screen, scale 4 is used.

Moving the cursor between the four corners of the

screen transforms the melodic and harmonic content.

Transitions are gradual. If the cursor is positioned at

the top center of the screen, half of the notes produced

will lie within scale 1 and half within scale 4, using a

weighted random selection. The further the cursor

moves to the right, the greater the chance that notes

from scale 4 will be used. When the curser is moved

all the way into the upper right corner, only notes

from scale 4 will be heard. The idea was to allow the

listener to control gradual transformations between

different musical moods. When the cursor is located in

the center of the screen notes from all four scales will

be used and the result is harmonically chaotic.

Sounds used for melody and accompaniment are

produced using a simple FM synthesis algorithm.

Each mood employs particular sounds, but continuous

transformation between these sounds is achieved by

gradually changing carrier and modulator envelopes

and the modulation index. The rhythm section uses

sample playback of four short samples at various

speeds and amplitudes.

4.5.3. Drones

Three drones can be controlled by the listener. If the

listener presses the letters A, S or D on the computer

keyboard a drone tone will be heard. A note from the

appropriate scale is selected according to the selection

process used in synchopatch. The pitches will

correspond to the current scale using a weighted

random function. A produces low pitches, S produces

middle pitches and D produces high pitches.

4.5.4. Graphics

The screen image represents the four moods of the

four corners.

Fig. 6. Synchopath screen image.

4.6. Kristian Vester

The Adaptive Sara-Black DUMP is an alternative

interpretation of the idea of adaptive music. It consists

of an e-bay auction, where the composer sells music

that does not yet exist at the time of sale. The buyer is

required to send an item to the seller that the seller and

buyer have agreed upon. The seller then somehow

incorporates this item into a piece of music, which he

then ships to the buyer. Kristian Vester (aka

Goodiepal) has chosen to defy the dogma and disobey

the 10 commandments (they say there’s always one in

the bunch). In his own view, Kristian Vester has only

“bent” the rules:

Thou shalt not covet long sound files

“I don’t necessarily, if they are long they are at least

generative.”

Thou shalt love thy listener as a participant

“I do indeed.”

Thou shalt see possibilities in limitations

“I do that, too.”

Thou shalt not mock modem connections

“Ebay works fine with a modem connection, and

receiving items by snail mail makes it even

easier.”

Thou shalt not reproduce (music)

“I am generative and adaptive.”

Thou shalt not give thy programmer ambiguous

messages

“I am my own HTML programmer.”

Thou shalt respect thy programmers limitations as

thine own

“I am my own HTML programmer.”

Thou shalt not kill thy programmer

“I plan to continue to the bitter end.”

Thou shalt observe all deadlines

“I’m trying, how about if we say May 1
st
?”

Thou shalt not create multimedia

“I create adaptive music.”

5. IMPLEMENTATION

5.1. MSP objects

Most of the composers created prototypes in

Max/MSP. Our strategy was to create an object

library in Java that mimicked the functions of the

Max/MSP objects used in the prototypes. The object

library created is by no means complete, since it is

basically limited to a collection of audio objects that

were employed in the prototypes.

Below is an example of the Java implementation

of an MSP object. The MSP object cycle~ is a general

table based oscillator but only a sin wave oscillator

was needed in this case.

Fig. 7. Java implementation of the Max/MSP

object cycle~

Each Max/MSP (sub) patch was implemented by 1)

creating object instances of Java classes

corresponding to the Max/MSP objects and 2)

connecting the objects corresponding to the

connections in the patch. This is similar to the unit

generator approach of Jsyn,[9]. The approach is

illustrated with the simpleFM patch from the MSP

tutorial 11, Fig. 8 and Fig 9. This subpatch has been

used in the FMvoice patch of Synchopath.

Fig. 8. simpleFM a Max/MSP subpatch used in

FMvoice of Synchopath.

Fig. 9. Java implementation of the Max/MSP

subpatch simpleFM.

Max/MSP patches created by the composers were not

always reproduced directly in Java. Often the musical

ideas behind a large patch needed to be analyzed,

disassembled and reconstructed in a new way more

native to Java. An example is the subpatch

quadraprob in Synchopatch, Fig. 10, and the

implementation in Java as shown in Fig 11.

Fig. 10. Quadraprob, Max/MSP patch from

Synchopath.

 Fig. 11. Quadraprob implemented in Java.

5.2. Java

The interfaces of the Java platform to the underlying

audio and graphics hardware made it possible to

implement the Max/MSP prototypes of the composers

in pure Java with integration of the user interaction,

audio processing and graphics generation in a single

framework. As of Java 1.5 the Java Sound API now

provides the audio quality needed to implement the

Max/MSP prototypes.

5.3. Compatibility

The Java applet framework allows Java programs to

run within a Java enabled browser without special

download actions from the user. This made it possible

to design and implement browser based adaptive

musical works with the works of the composers

embedded within a single web page.

6. CONCLUSION

6.1. Dogma vs. practice

One important project goal was to explore the artistic

potential of the web as a media in its own right and

develop musical forms specifically created for web

publication. In order to do this, it was deemed

necessary to encourage the artists involved to break

with some very strong cultural norms embedded in our

musical traditions and media conventions. A dogma,

or set of rules, was created to this end. But complying

by these rules was clearly no easy task. Composing

adaptive music is quite a different thing than

composing music for distribution as an audio

production or composing music intended for

performance by trained musicians. The role of the

composer must be redefined in relation to more

tradition musical forms [15]. The composer must

relegate a certain degree of artistic control to the

listener. But the composer cannot expect or demand

that the listener possesses any musical skills. The

paradigm of a musical game might be more useful

than that of a musical composition. The quality of a

game in terms of aesthetics and entertainment does not

depend on the outcome of a particular instance of

playing the game, but rather on the design,

architecture and rules of the game itself. Interaction

must go hand in hand with artistic content. However,

the success of an adaptive musical work will not

depend on the sonic result during a particular sitting

alone, but on the level of engagement of the listener as

well [16]:

“But interaction is not an end in itself, it is

necessary to stipulate that the quality of the

interactivity depends upon the extent to which the

work of art can encourage both critical reflection

and creative engagement.”

6.2. Visualization

In the foreword to Chion’s book Audiovision, the

well-known sound designer Walter Murch writes

[17]:

“For as far back in human history as you would

care to go, sound had seemed to be the inevitable

and ‘accidental’ (and therefore mostly ignored)

accompaniment of the visual –– stuck like a shadow

to the object that caused them”

Our intention was to bring sound to the foreground, to

suppress the physiological and cultural tendencies to

focus on vision. But the web is largely used and

accepted as a visual medium. We could not simply

ignore the visual aspects of interface design. Visual

artist and graphic designer Iben West was associated

with the project in the final stages. Her tasks were to

1) design an index web page that would serve as a

visual identity to the project, 2) coordinate existing

user interfaces for the various works and 3) design

new graphic user interfaces for works without

integrated graphic elements.

Any graphic user interface, no matter how simple,

has a visual aesthetic. It was important that the visual

aesthetic of the user interfaces served to complement

(or in the least not disrupt) user interaction with the

audio content of the various adaptive works. In

practice, most of the composers chose to incorporate

graphic elements, making graphics an integrated part

of the adaptive work. This was a natural approach,

since interaction design in the adaptive audio works

could hardly be imagined without an existing graphic

interface with which to interact.

In some cases functionality and user-friendliness

were sacrificed in favor of an artistic approach to

graphics. Looking back, it would have been useful to

involve a graphic designer and to agree upon the exact

role of the graphic user interfaces at an earlier stage.

6.3. Technical considerations

6.3.1. Choice of platform

The Java applet platform turned out to be a suitable

choice because it is possible to implement the kind of

adaptive musical work that the composers came up

with in Max/MSP. Unfortunately the download of the

applets turned out to be rather slow and we did not

have time to investigate if the download times could

be shortened.

6.3.2. Java implementation of Max/MSP patches

As in the DAF-X [7] and Jass [8] systems we

managed to implement real time interactive audio and

graphics in pure Java. The methodology of using

Max/MSP prototypes turned out to be a productive

way of conveying the musical ideas to the

programmers, at least in the beginning of the

implementation process. Later, the composers and the

programmers worked together to get a more efficient

Java implementation out of the Max/MSP prototype.

It might have been an advantage to involve the

programmers in the programming of the Max/MSP

patches.

6.3.3. Compatibility issues and compromises

Embedding the Java applets into different browsers

and different versions of browsers turned out to be a

tremendous challenge. A browser environment is not a

well-defined environment. We experienced numerous

unpleasant surprises when we tested the applets in

different environments. The present web site offers no

solution to this problem. The applets may work as

intended, or they may not. This seems to be the nature

of the browser as a media: the amount of processing

time available to the browser cannot be defined by an

applet and this amount varies according to system

configuration. The graphics look different on different

browsers, the interaction may not work because the

applet does not receive the keyboard and mouse

inputs, and the underlying Java implementations on

different platforms are not equally efficient. As a

consequence the adaptive musical works on the web

site do unfortunately behave very differently on

different platforms.

6.4. Future work

User interaction in computer games is becoming

increasingly sophisticated. In most cases emphasis is

placed on visual parameters. The potential of user

interaction with sound is great, and here we have only

scratched the surface.

7. ACKNOWLEDGEMENTS

Ole Caprani and Jacob Langdal Jensen performed the

initial investigations of platforms and designed the

Max/MSP to Java methodology. Jacob Langdal Jensen

started the implementation of the Java Max/MSP

object library, the graphics library, scheduling of

Max/MSP java objects during real time playback and

he implemented works by Jens Hørsving, Lasse

Laursen and initiated the implementation of the work

by Wayne Siegel. Later, Timo Dinnesen, Mikkel

Gravgaard, Kristian Klüver, Sigurd Melgaard, and Ole

Caprani completed the Java implementation of the

library and the works by Mikko Jensen and Wayne

Siegel. The graphics for the index web page were

designed by Iben West. The graphics for the work by

Jens Hørsving were designed by the composer. The

graphics for the works by Mikko Jensen and Wayne

Siegel were designed by Iben West. The graphics for

the work by Lasse Laursen were designed by Jacob

Langdal Jensen and the composer.

8. REFERENCES

[1] Rowe, R. Interactive Music Systems. MIT

Press, Cambridge, 1993, p.1

[2] Clark, A. Defining adaptive music.

Gamasutra,

http://www.gamasutra.com/features/2007041

7/clark_01.shtml

[3] Bergman, L., et al. Interactive Audio on the

Web. Interactive Audio Special Interest

Group, 2002, http://www.iasig.org, p. 8

[4] http://www.cycling74.com

[5] Essl, Karlheinz, Music Software,

http://www.essl.at/software.html

[6] http://en.wikipedia.org/wiki/Java_%28progr

amming_language%29

[7] Guillemard, M. et al. J-DAFX –Digital

Audio Effects in Java, Proc. of 8’th Int.

Conference on Digital Audio Effects,

Madrid, Spain, 2005

[8] Van den Doel, K. Jass: A Java Audio

Synthesis System for Programmers,

Proceedings of the 2001 International

Conference of Auditory Display, Espoo,

Finland, 2001

[9] Burk, P. JSyn – A Real-time Synthesis API

for Java, Proceedings of the 1998

International Computer Music Conference,

MIT Press, Cambridge, 1998.

[10] http://www.softsynth.com/

[11] http://en.wikipedia.org/wiki/Adobe_Flash

[12] Bergman, L., et al. Interactive Audio on the

Web. Interactive Audio Special Interest

Group, 2002, http://www.iasig.org, p. 13

[13] Matthes, Olaf, flashserver:: communication

between Max/MSP and Flash,

http://www.nullmedium.de/dev/flashserver/

[14] http://www.mortenriis.dk/

[15] Siegel, W. The Challenges of Interactive

Dance, An Overview and Case Study,

Computer Music Journal, vol. 22, no. 4, MIT

Press, Cambride, 1998

[16] Coulter-Smith, G. Deconstructing

Installation Art: Fine Art and Media Art,

1986-2006, On-line book,

http://www.installationart.net/

[17] Chion, M. Audiovision: Sound on Screen.

Columbia University Press, New York 1990,

p. xvi

